

COURSE PLAN

FIRST: BASIC INFORMATION

College	
College	: Karak University College
Department	: Department of Basic and Informatics Sciences

Course				
Course Title	: Structure Mechanics			
Course Code	: 020112235			
Credit Hours	: 3 (3 Theoretical, 0 Practical)			
Prerequisite	:020000161*			
	*Co-requisite			
Instructor				
Name	: Rayah Nasr Salam Al-Dala'ien : -			
Office No.				
Tel (Ext)	:-			
E-mail	: Rayah.Nasr1@bau.edu.jo			
Office Hours	:-			
Class Times				

Text Book

- Engineering Mechanics-Statics, Hibbeler, R.C.14th Edition, Pearson Prentice Hal.
- Mechanics of Materials, Hibbeler, R. C.8th Edition, Pearson Prentice Hall.

References

- 2011. الاستاتيكا د. ياسر الحنيطي، د. محمد الرجوب، د. طارق رشيد، دار المسيرة للنشر والتوزيع،
- . الميكانيكا الهندسية د.سليمان ابو عين، د.وليد المومني، مكتبة المجتمع العربي للنشر والتوزيع •
- . مقاومة مواد م إياد الداهوك، مكتبة المجتمع العربي للنشر والتوزيع 2012 •
- Vector Mechanics for Engineers-Statics, 10th Edition,, F.P.Beer, E.R.Johnston, D.F.Mazurek, McGraw-Hill, Inc., 2013, ISBN 978-1-259-00792-7.

SECOND: PROFESSIONAL INFORMATION COURSE DESCRIPTION

This course covers working knowledge of statics and strength of materials to understand the mechanical relationships and stability of structure. And it provide basic concepts such as moments of force, stress and strain, and buckling.

COURSE OBJECTIVES

The objective of this course is to enable the student to do the following:

-Define force and moment vectors and give necessary vector algebra

-Explain the concept of equilibrium of particles and rigid bodies in plane and 3D space

-Define support types and to developed ability to calculate support reactions

-Explain the equilibrium of structures and internal forces in beams

-Explain distributed loads

-Explain centroid and moment of inertia

-Define stress and strain, Hook's law, stress-strain diagram, axial load, buckling, bending and torsion.

-Compute and draw the shear-force and bending moment diagram for transverse loading on a beam.

-Explain basic concepts and principles of strength of materials.

-Calculate stresses and deformations of objects under external loadings.

-Apply the knowledge of materials strength to engineering applications and design problems.

COURSE LEARNING OUTCOMES

On successful completion of this course, students are expected to be able to:

CLO1. Explain the fundamental concepts of vectors, equilibrium of particles and rigid bodies in plane and 3D space.

CLO2. Analyze the properties (components, resultants and moments) of a force and force systems in 2D & 3D.

CLO3. Solve equilibrium problems of various types of structures using analytical models, rigid bodies, FBDs and equations of equilibrium.

CLO4. Apply and demonstrate the principles and tools of STATICS in the analysis and solution of equilibrium problems based on a real-world scenario.

CLO5. Solve the properties (centroid, center of gravity and moment of inertia) of areas, lines and volumes and apply these properties in equilibrium problems.

CLO6. Solve problems relating to pure and non-uniform bending of beams and other simple structures.

CLO7. Explain the fundamental concepts of stress and strain and the relationship between both through the strain-stress equations in order to solve problems for simple tridimensional elastic solids CLO8. Apply and demonstrate the principles and tools of Strength of Materials in the analysis and solution of equilibrium problems based on a real-world scenario.

CLO9. Solve problems relating to torsional deformation of bars and other simple tri-dimensional structures

CLO10. Explain the concept of buckling and be able to solve the problems related to isolated bars

COURSE	COURSE SYLLABUS				
Week	Торіс	Topic details	Related LO and Reference (Chapter)	Proposed assignments	
	Statics				
1	General Principles	MechanicsFundamental ConceptsUnits of Measurement	CLO1		

Week	Торіс	Topic details	Related LO and Reference (Chapter)	Proposed assignments
		 The International System of Units Numerical Calculations General Procedure for Analysis 		
2	Force Vectors	 Scalars and Vectors Vector Operations Vector Addition of Forces Addition of a System of Coplanar Forces Cartesian Vectors Addition of Cartesian Vectors Position Vectors Force Vector Directed Along a Line Dot Product 	CLO2	
3	Equilibrium of a Particle	 Condition for the Equilibrium of a Particle The Free-Body Diagram Coplanar Force Systems Three-Dimensional Force Systems 	CLO3	
4	Force System Resultants	 Moment of a Force – Scalar Formulation Cross Product Moment of a Force–Vector Formulation Principle of Moments Moment of a Force about a Specified Axis Moment of a Couple Simplification of a Force and Couple System Further Simplification of a Force and Couple System Reduction of a Simple Distributed Loading 	CLO3	
5	Equilibrium of a Rigid Body	 Conditions for Rigid-Body Equilibrium Free-Body Diagrams Equations of Equilibrium Two- and Three-Force Members Free-Body Diagrams Equations of Equilibrium Constraints and Statical Determinacy 	CLO4	
6	Center of gravity and Centroid	 Center of Gravity, Center of Mass, and the Centroid of a Body Composite Bodies Resultant of a General Distributed Loading 	CLO5	
7	Moment of inertia	 Definition of Moments of Inertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of Inertia for Composite Areas 	CLO5	

Week	Торіс	Topic details	Related LO and Reference (Chapter)	Proposed assignments
8				
9	Internal forces	 Internal Loadings Developed in Structural Members Shear and Moment Equations and Diagrams Relations between Distributed Load, Shear, and Moment. 	CLO6	
10	Stress & strain	 Review equilibrium equations Review internal forces Normal stress Shear stress Single shear Double shear Factor of safety 	CLO7	
11	Mechanical Properties of Materials	 Stress strain diagram (elastic vs inelastic) Hooke's law Poisson effect Shear response 	CLO7	
12	Axial Load	 Saint-Venat's Principle Elastic Deformation of an axially loaded member The force of Analysis axially loaded member. 12.8 stress concentration. 	CLO7	
13	Bending	Bending kinematicsFlexure formulaUnsymmetric bending	CLO8	
14	Torsion	 Torsion kinematics Torsion formula Polar moment of inertia Power transmission Angle of twist 	CLO9	
15	Column buckling	Critical loadEuler equationDiffering supports	CLO10	
16		Final Exam		

COURSE LEARNING RESOURCES

Teaching will be achieved using available resources including Lectures, data show and materials uploaded to the e-learning system and term projects

ONLINE RESOURCES

https://www.youtube.com/playlist?list=PLOAuB8dR35oft2ZLc1sHseypNMAiG_TeJ https://www.youtube.com/playlist?list=PLOAuB8dR35oft2ZLc1sHseypNMAiG_TeJ

ASSESSMANT TOOLS

ASSESSMENT TOOLS	%
Projects and Quizzes	20
Mid Exam	30
Final Exam	50
TOTAL MARKS	100

THIRD: COURSE RULES ATTENDANCE RULES

Attendance and participation are extremely important, and the usual University rules will apply. Attendance will be recorded for each class. Absence of 10% will result in a first written warning. Absence of 15% of the course will result in a second warning. Absence of 20% or more will result in forfeiting the course and the student will not be permitted to attend the final examination. Should a student encounter any special circumstances (i.e. medical or personal), he/she is encouraged to discuss this with the instructor and written proof will be required to delete any absences from his/her attendance records.

GRADING SYSTEM Example:

Grade	points
-	

REMARKS

Use of Mobile Devices, Laptops, etc. During Class, unexpected noises and movement automatically divert and capture people's attention, which means you are affecting everyone's learning experience if your cell phone, laptop, etc. makes noise or is visually disturbing during class. For this reason, students are required to turn off their mobile devices and close their laptops during class.

Academic Integrity. Copying assignments, allowing assignments to be copied, will fail the assignment on the first offense. Cheat in tests, or copying assignments for the second time.

Cite all sources consulted to any extent (including material from the internet), whether or not assigned and whether or not quoted directly.

Project: Students will undertake a term project to study in detail one of the course topics. The project may involve a critical literature review or a case study. The students should consult at least five (5) references or journal articles. A written project report of 10 pages maximum will be submitted in nominated dates. Ten-minute presentation will be given to the rest of the class during the last two weeks of the semester. Formats, Rules, Topics, submission and presentation dates are illustrated in project form.

COURSE COORDINATOR

Course Coordinator	Department Head:	
Signature:	Signature:	
Date:	Date:	